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The equations and relationships obtained above result in known dependences in a num- 
ber of particular cases [2--5, 9, 10]. 
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The motion of gas which initially fills the whole space and is subjected to an 
instantaneous liberation in a thin layer of initial internal energy E 0 and momen- 
tum I0 is considered. The asymptotic behavior of solution for various relations 
between E 0 and l0 is investigated numerically. 

When solving unsteady lxoblerns of gasdynamics it is often interesting to investigate 
the asymptotic properties of motion, which are determined for a fairly long time t and 
are independent of initial data details. In the majority of cases these properties are de- 
fined by self-similar solutions. The transition of the flow to the self-similar rrtode can 
be traced by solving the exact problem with initial and boundary conditions for the input 
Euler equations. 

Let us consider the plane motion of a perfect inviscid gas free of thermal conductivity 
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for the following in i t ia l  conditions. Let constant pressure p = P0 and veloci ty  v = v o 
be specif ied for t = 0 in a gas layer  0 <  z < z o (z 0 is the Euler's space coordinate) ,  
while in the remaining part of space p = 0 and v = 0. At the in i t ia l  instant the density 
is constant throughout the space and is equal  pp. Expressions for the kinetic  energy K0 
generated by momentum I0 and internal  energy E0 specified at the in i t ia l  instant per 
unit  area for a perfect  gas can be written as 

poVo2Zo Poxo 
Ko= ~ ,  E0-- - -  

where ~ is the ratio of specific heats. We shall consider the asymptotic behavior of 

solution of the indicated problem for considerable t, when the size of the perturbation 

motion region X >~> z0. The emergence of an asymptotic solution is evidently determined 

to a considerable extent  by the relat ion between E 0 and K0. 
In the l imi t  case K0 = 0, E 0 = const and z 0 ~ 0 the considered problem reduces 

to the singular Cauchy problem that defines the explosion of a plane charge in gas [1]. 

For E0 >~ K0 the considered motion can be expected to become direct ly  asymptotic 
that corresponds to the se l f - s imi la r  solution of the problem of a strong explosion, with 
the t ime  of passing to the l imi t  mode decreasing with increasing E 0 and decreasing z0 
When K0 >~ E0 and t ~ co the asymptotics of motion are again defined by the solu- 
tion of the problem of strong explosion. However, on the other hand, a rarefact ion flow 
will  exist  for some t ime to the lef t  of the explosion layer ,  since at the in i t i a l  instant gas 
part icles  in the layer  have an in i t ia l  ve loc i ty  vo in the direct ion of the x -ax i s .  A s imilar  
si tuation is a feature of the problem of energy release at the interface of two media  of 

different densities [2]. A lack  of symmetry  in energy distribution between gas part icles  
moving to the lef t  and right exists at the in i t ia l  instant. It can be, consequently, expected  
that during a cer tain interval  of t ime the shock wave moving to the right will  conform 
to the law of the se l f - s imi la r  solution of the pmbtem of the short shock [3, 4] .  A redis- 
tr ibution of energy between the le f t -  and tight-hand hal f -p lanes  ( re la t ive  to the point of 
zero veloci ty)  takes place  in the course of t ime  ; i t  depends on the flow mode that is 
establ ished by the strong explosion. 

In order to confirm the above reasoning of a qual i ta t ive  kind, and for a more de ta i led  
invest igat ion of the effect  of parameters  /C o and go on the asymptotics of the plane 
motion of gas, computat ions were carried out for t = 0 and 0 ~ z ~ 0.5 and the fob. 

lowing discontinuous in i t i a l  da ta :  

t ° p = 2 ,  v = 0 ,  p = t ;  3 ° p = 1 ,  v =  k : g , p = t  
2 ° p = 0 , v = 3 . t 6 , p =  I; 4 ° p =  1.5, v =  ]/'2.--.5, p =  1 

At a l l  remaining points of space p = u ~-~ 0 and p = t were assumed at the in i t i a l  
instant,  and ~ = 7/6 was used in computat ions.  The i n i t i a l  data  were c h o ~ n  so that  in 
al l  cases the total  energy 8 = go + K0 = const. Al l  dependent  and independent  var ia -  
bles appearing in equations as well  as the in i t i a l  da ta  are taken as dimensionless quanti-  
ties, with the z - c o o r d i n a t e  re la ted  to z0, veloci ty  to ~'0, density to 0o, pressure to p0v0 s, 
and t ime to zo / v0. These dimensionless quanti t ies leave  Euler 's equations invariant.  

The solution of Euler's equaticm which defines the considered motion with discontinu- 
ous in i t ia l  data  was obtained by the r ipple- through method p roppe d  in [5] which makes 
computat ion possible throughout the region of motion,  including that of shock waves, by 
the introduction of ar t i f ic ia l  viscosity. 
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Computation shows that in Case 1" the solution begins to show fairly quickly (for 
t ,-- 40) the asymptotic properties associated with the problem of strong explosion. 

The cases 2* --  4*, for which the results of  calculations are shown, respectively, in Figs. 
1--  8, are more interesting. Curves of pressure distribution p / Pss along the coordinate 
k = z / zs2 are shown in these diagrams. The pressure Ps2 immediately behind the shock 
wave moving in the direction of the z -axis and its coordinate zss were determined in 
the course of computation. The dash-line curves denoted by numerals 1--  12 relate to 
the following instants of t ime t : 

N t 2 3 4 5 6 7 8 9 i0 t t  i2 
t 3 5 7 t0 28 4t 95 t50 203 210 263 456 

The lower and upper solid curves relate to the self-similar solutions of problems of 
short shock and strong explosion, respectively. 

It will be seen that in the case 2 ° (E0 = 0 and K0 = 8) the solution has two asymp- 
totic modes (Fig. 1). The flow that corresponds to the self-similar solution of the problem 
of short shock obtains in the region of the variable k which adjoins the right-hand shock 
wave during some finite but fairly long interval of t ime ( t 0 ~  t<.  260). Region k in which 
the flow with short shock obtains changes with time, decreasing with increasing t. A 
further increase of t ime (t > 260) the indicated intermediate mode begins to change, 
and the solution for t ~ oo has the asymptotic properties associated with the problem 
of strong explosion. 

The self-similar solution of the problem of short shock is accurate within the constant 
A which determines the shock wave law of motion z82 = (A t) 'A. That constant contains 
some information about initial data and can be determined only by the solution of the 
non-self-similar problem. The related constant appearing in the law of shock wave mo- 
tion with strong explosion depends only on the explosion energy e and the initial density 
P0 and can be computed in the course of solving the self-similar problem. 

The pressure distribution shown in Fig. 9 
/* 
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Fig. 4 

relates to Case 8 ° (K0 = E0). It will be 
seen that here the asymptotics associated 
with a strong explosion is reached earlier 
than in tile preceding case, nevertheless the 
asymptotics associated with the short shock 
appears in the neighborhood of the right-hand 
shock wave for a t ime interval that is still 
fairly long. 

The behavior of solution in Case 4" in 
which K o / E o = %  (Fig. 3) is somewhat uaex- 

pected. The mode of flow for which the fight-hand shock wave moves in conformity 
with the law of the self-similar solution of the problem of short shock is present here, 
although the t ime interval for which that mode occurs is comparatively short ( 5 <  t ~20) .  

It is shown in [6-- 9] that one-dimensional unsteady flows may be used for solving the 
problem of hypemoaic flow past a wing of  infinite span. As an example,  let us consider 
the flow around a finite plate set at some angle of attack cz (Fig. 4). Let us select a not 
too small ct.  Strictly speaking, the motion of gas displaced by a piston that is removed 
after having moved for some time at constant velocity corresponds to such flow in the 
framework of unsteady analogy. However the solution of the Cauchy problem derived 
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above can be used in qualitative investigations, for which the ratio K0 / E0 must evi- 
dentiy be of the order of unity. 

As was shown above, a finite time interval exists within which the law of shock wave 
propagation is determined by the solution of the problem of short shock, even for Ko / 
E0 = 1/3. Hence it can be expected that at some fairly considerable distance z from 
the plate leading edge the shape of the shock wave in a steady hypersonic stream is also 
determined by the solution of the indicated problem, and that the pressure distribution 
over the surface of the body rapidly reaches the value obtaining in the case of a strong 
explosion. It is clear that at infinity downstream the shock wave shape and the velocity 
field in its neighborhood will vary only little from that predicted in the theory of explo- 
sion. The effect of the plane lift can be easily taken asymptotically into account for 
x -~ co by the introduction of the "directed" exploaion concept according to which not 

only energy, but also momentum are imparted to the gas [10]. 
It would be interesting to obtain an experimental confirmation of the proposed here 

hypothesis on the shock wave shape in the case of hypersonic flow past a body at some 
angle of attack. 

In concluding the author thanks O. S. Ryzhov for his constant interest in this work. 
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